A hydrothermal anvil made of graphene nanobubbles on diamond.

نویسندگان

  • Candy Haley Yi Xuan Lim
  • Anastassia Sorkin
  • Qiaoliang Bao
  • Ang Li
  • Kai Zhang
  • Milos Nesladek
  • Kian Ping Loh
چکیده

The hardness and virtual incompressibility of diamond allow it to be used in high-pressure anvil cell. Here we report a new way to generate static pressure by encapsulating single-crystal diamond with graphene membrane, the latter is well known for its superior nano-indentation strength and in-plane rigidity. Heating the diamond-graphene interface to the reconstruction temperature of diamond (~1,275 K) produces a high density of graphene nanobubbles that can trap water. At high temperature, chemical bonding between graphene and diamond is robust enough to allow the hybrid interface to act as a hydrothermal anvil cell due to the impermeability of graphene. Superheated water trapped within the pressurized graphene nanobubbles is observed to etch the diamond surface to produce a high density of square-shaped voids. The molecular structure of superheated water trapped in the bubble is probed using vibrational spectroscopy and dynamic changes in the hydrogen-bonding environment are observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observing high-pressure chemistry in graphene bubbles.

Using IR spectroscopy, high-pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene-diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high-...

متن کامل

XAFS measurements on Zr in aqueous fluids at high pressures and temperatures using a modified hydrothermal diamond-anvil cell

Aqueous fluids play a significant role in the transport of heat and matter in the Earth’s crust and the upper mantle, and high-field-strength elements such as Zr are important geochemical tracers for these processes. However, the dissolution mechanism and complexation of Zr in the fluids at high pressure and temperature are unknown, in part because very low concentrations present severe experim...

متن کامل

Nanocrystalline hexagonal diamond formed from glassy carbon

Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not ...

متن کامل

Propane oxidative dehydrogenation over vanadium oxide nanostructures supported on porous graphene prepared by hydrothermal method

In this study at first, in laboratory, three types of vanadium oxide were produced by using porous graphene and amine framework in hydrothermal method nanostructures such as: vanadium oxide - octadecyl amine - graphene, vanadium oxide - dodecyl amine - graphene and vanadium oxide – aniline - graphene (V-ODA-G، V-DDA-G، V-A-G). Then their structures and functions in propane dehydrogenation react...

متن کامل

Conductance signatures of electron confinement induced by strained nanobubbles in graphene.

We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013